

Get the most out of your JIRA data

At ServiceClarity we believe in getting the best you can from the data that you have. In
practical terms this means working with the data available in operations tools such as JIRA
and JIRA ServiceDesk. Operations tools often contain the most up to date and accurate
picture of your organisation and as a core workflow and resource management product JIRA
is plugged directly into how your team works. When combined with ServiceClarity this data
can be leveraged to provide key insights and to drive optimisation.

Quality
Use ServiceClarity and JIRA to understand the quality of your work pipeline by tracking key
performance indicators (KPIs) such as the % of new tasks without estimates or the % of
new issues being rejected. Shine a light on the quality of your output by comparing the
volume of issues found internally against the number found by your customers. Monitor your
customers’ experience with time to respond and time to resolve KPIs and track reopened
issues to help you get it right first time.

Efficiency
Use ServiceClarity to make sure that high priority tasks are being resolved as quickly as
possible. Spot early warning signs of bottlenecks by monitoring cycle times, answering
questions like: “How long is work waiting for customers?”, “How long are tasks waiting for
QA?”. Use ServiceClarity burndown and throughput KPIs to track if work arriving faster
than your team can cope.

Planning
ServiceClarity with JIRA can calculate your work in progress (WIP) as well as your work
throughput and average lead time helping you to plan ahead, to refine predicted delivery
dates and react to changing circumstances. Use ServiceClarity to convert the time spent on
JIRA tasks into costs and project these into the future to help manage budgets.

The power of JIRA’s Query Language
ServiceClarity provides a set of unique data collectors specifically for working with your JIRA
data. These range from simple issue counters to time trackers and also more specialised
JIRA ServiceDesk SLA trackers or JIRA Agile Story Points and Epics . The value that these
ServiceClarity JIRA data collectors provide builds upon the JIRA’s own query capabilities:
the JIRA Query Language (JQL).

ServiceClarity leverages all of the power of JIRA’s JQL search to ensure that your
ServiceClarity KPIs are tracking just the right JIRA issues, enabling you to track specific
projects, user groups, status changes, SLAs and Epics. In fact anything that you can find in

JIRA can be tracked in ServiceClarity by adding the JQL query to the ServiceClarity data
collection configuration:

Although this guide is not intended as a detailed JQL reference we will look at some specific
techniques and JQL queries and how they can be used within ServiceClarity. If you are
unfamiliar with JIRAs search capabilities we suggest experimenting with JQL from the JIRA
application. You can enable JQL search on the Issue Search page in the JIRA application to
try out the powerful query language:

Once enabled the JQL search capability in JIRA provides advanced searching. JIRA JQL
queries created within the JIRA application can be copied directly in ServiceClarity and used
to build ServiceClarity KPIs.

Comprehensive reference material on how to the get the most out of JQL is provided by
Atlasstian on their support portal. We recommend the following Atlassian guide and
reference documents:

● Getting Started
https://confluence.atlassian.com/jiracorecloud/searching-for-issues-765593657.html

● Advanced Searching - functions reference
https://confluence.atlassian.com/jiracorecloud/advanced-searching-functions-referenc
e-765593719.html

● Advanced Searching - operators reference
https://confluence.atlassian.com/jiracorecloud/advanced-searching-operators-referen
ce-765593718.html

How to find the data you need
When creating ServiceClarity KPIs from JIRA data it pays to be as specific as possible with
your JQL queries. This is true regardless of what you are asking ServiceClarity to track: time
spent, issues closed, SLAs breached, total estimated effort, etc. The values for all of these
KPIs can be affected by the selected set of JIRA issues. It is important to make sure that
ServiceClarity JIRA data collection tracks the right project, the right issue type, priority and
status.

For example, an important KPI available from JIRA, and a fundamental performance
indicator, is a count of the number of tasks (issues, tickets, stories, etc) that are actively
being worked on at any one time. This is the simplest measure of work in progress (WIP)
that you can track and in the absence of detailed estimates or sizing it can be a valuable way
to monitor the flow of work. The default JIRA installation and JIRA Cloud account come with
a built in configuration that includes a work status called: “In Progress”. To make use of this
default we could write a JQL query to find work that is currently “In Progress”:

status = 'In Progress'

Every time this JQL is run it will return the set of tasks in JIRA that currently have a status of
In Progress. However, many JIRA systems contain data for multiple independent projects
and the above JQL will find all tasks in all projects. We can refine this query to include only
those tasks that are in a specific project:

status = 'In Progress' AND project = 'Example Project Name'

https://confluence.atlassian.com/jiracorecloud/searching-for-issues-765593657.html
https://confluence.atlassian.com/jiracorecloud/advanced-searching-functions-reference-765593719.html
https://confluence.atlassian.com/jiracorecloud/advanced-searching-functions-reference-765593719.html
https://confluence.atlassian.com/jiracorecloud/advanced-searching-operators-reference-765593718.html
https://confluence.atlassian.com/jiracorecloud/advanced-searching-operators-reference-765593718.html

The above is a more specific query but it might still not be targeting the exact set of tasks
that you want to track in ServiceClarity. For example, it is common to configure JIRA to
manage multiple types of work including but not limited to: customer support issues, defects
(or bugs), ongoing production tasks, design tasks, agile stories and many more. We can
further refine our In Progress JQL to filter out one or more of these types:

status = 'In Progress' AND project = 'Example Project Name' AND issueType = 'Defects'

Hopefully it is easy to see how the JQL query for our work in progress KPI can be evolved
to focus in on a specific area of interest.

How to write JQL to obtain historical data
In the previous section we looked at creating a JQL query that could be used within
ServiceClarity to create a work in progress KPI. The example looked at filtering out work
status, project and issue type to find the work that is currently active. However, unless your
JIRA system or project has recently been created it will very likely contain a wealth of
historical information that cannot be accessed with the previous version of our JQL example.

For ServiceClarity to look back in time at historic JIRA data we need to rethink how we select
the work in progress. Fortunately there are advanced JQL features that can help us, the
details of which can be found in Atlassian’s support portal:

● Advanced Searching - operators reference
https://confluence.atlassian.com/jiracorecloud/advanced-searching-operators-referen
ce-765593718.html

Using the advanced JQL operator WAS … ON we can adapt our previous example to cope
with finding historic data by changing the date ‘2015-11-14’ in our new example JQL:

status WAS 'In Progress' ON '2015-11-14' AND project = 'Example Project Name' AND
issueType = 'Defects'

The Atlassian documentation on advanced operators includes many examples but an
interesting one worth highlighting here is CHANGED FROM … TO, which can enable some
useful JQL filtering within ServiceClarity.

An example of how ServiceClarity can make use of this operator is to historically track a
common support KPI: time to respond. This KPI calculates the time that support issues
take to move from a status of “New” to the next stage of the support process, for example:
“In Progress”. To calculate values for the time to respond on a date in the past
ServiceClarity needs to find those issues that have made that transition from “New” to “In
Progress” on that date:

https://confluence.atlassian.com/jiracorecloud/advanced-searching-operators-reference-765593718.html
https://confluence.atlassian.com/jiracorecloud/advanced-searching-operators-reference-765593718.html

status CHANGED FROM 'New' TO 'In Progress' ON '2015-11-14'

ServiceClarity JQL extensions

Variables
To help with managing complexity and promoting reuse ServiceClarity data collectors
support the use of variables. You can define your own variables and share them across
ServiceClarity JIRA data collectors to make working with complex JQL easier.

Continuing with our previous example of a work in progress KPI we might want to create
multiple KPIs that, for our example project, track the number of new defects, closed defects,
the time to resolve defects, etc. In addition our JIRA system might have more than one
status that is considered “In Progress” or there may be additional condition that need added
to the JQL to account for specific groups of users, product versions, etc. ServiceClarity
variables can be used to help manage this complexity.

On the ServiceClarity JIRA connection page we can define a variable that incorporates a set
of baseline JQL filters that we want to add to multiple JQL queries:

Now that we have declared our base_jql variable we can rewrite our previous JQL
example as:

{base_jql} AND status WAS 'In Progress' ON '2015-11-14'

When ServiceClarity requests the above data from JQL is will replace the {base_jql} part
of the JQL with our declared value project = 'Example Project Name' AND
issueType = 'Defect'. The immediate value of this is the reuse of this base jql for
other related data collections, for example we could collect the number of new defects
created, the number being closed and the total number that are unresolved.

New defects JQL:

{base_jql} AND status WAS 'New' ON '2015-11-14'

Closed defects JQL:

{base_jql} AND status WAS 'Resolved' ON '2015-11-14'

Unresolved defects JQL:

{base_jql} AND status WAS NOT 'Resolved' ON '2015-11-14'

Functions
As well as providing custom variables for working with complex JQL ServiceClarity provides
built in date and time functions to support historic data collection through dynamically
generated JQL.

There is a complete reference of the available built in functions at the end of this document
but the most relevant for our example is the DATE function. This refers to the date of the
data collection, a date that by default means “today” but could for historical data refer to any
date in the past, for which there is JIRA data. In the above example showing the Collect live
metrics dialogue ServiceClarity will collect JIRA data for all dates between 1st July 2017 and
the 8th July 2017 and for each of these dates the DATE function will rewrite the JQL query to
use the correct date.

We can rewrite the JQL for our work in progress example using the built in DATE function
like this:

{base_jql} AND status WAS 'In Progress' ON '{DATE,yyyy-MM-dd}'

When a ServiceClarity data collection is run using the above JQL the DATE function will
calculate the correct date and substitute the formatted value into the JQL.

Other useful date related functions provided by ServiceClarity include the following, each of
which can be formatted if required using optional formatting rules:

● {END_OF_DAY}

● {END_OF_LAST_MONTH}

● {END_OF_LAST_WEEK}

● {END_OF_LAST_YEAR}

● {END_OF_MONTH}

● {END_OF_NEXT_MONTH}

● {END_OF_NEXT_WEEK}

● {END_OF_NEXT_YEAR}

● {END_OF_WEEK}

● {END_OF_YEAR}

● {LAST_MONTH}

● {LAST_WEEK}

● {LAST_YEAR}

● {NEXT_MONTH}

● {NEXT_WEEK}

● {NEXT_YEAR}

● {DATE}

● {START_OF_DAY}

● {START_OF_LAST_MONTH}

● {START_OF_LAST_WEEK}

● {START_OF_LAST_YEAR}

● {START_OF_MONTH}

● {START_OF_NEXT_MONTH}

● {START_OF_NEXT_WEEK}

● {START_OF_NEXT_YEAR}

● {START_OF_WEEK}

● {START_OF_YEAR}

All of the above date keywords can be extended with offsets - days, weeks months or years -
to provide even greater control. For example,

● {DATE(-1d)} - the day before the date of collection
● {START_OF_MONTH(-1d)} - the end of the month before the date of collection

● {START_OF_MONTH(-6M)} - 6 months before the date of collection start at the 1st
● {START_OF_WEEK(-4w)} - the Monday 4 weeks before the date of collection
● {END_OF_WEEK(-1w)} - the Sunday before the date of collection
● {END_OF_MONTH(-1M)} - the end of the month before the date of collection
● {END_OF_MONTH(-3M)} - the end of the month 3 months before the date of

collection
● {START_OF_YEAR(-1y)} - the 1st January he year of the collection

JIRA Workflow
Although JIRA and JIRA ServiceDesk are used in a wide range of organisations to solve a
seemingly endless variety of operational problems at its core JIRA is a work tracking tool
built around the concept of tracking work items (tasks, problems, customer issues, bugs, etc)
through a set of defined stages, or steps. The stages that items in JIRA move through are
collectively known as JIRA Workflow and by default JIRA and JIRA cloud accounts come
preconfigured with a simple JIRA Workflow, sometimes referred to as “JIRA classic”.

JIRA workflows can be highly customised and predefined templates are available for
download as JIRA add-ons. To read more on JIRA workflows we recommend the Atlassian
support document:

● Working with JIRA workflows
https://confluence.atlassian.com/adminjiracloud/working-with-workflows-776636540.h
tml

https://confluence.atlassian.com/adminjiracloud/working-with-workflows-776636540.html
https://confluence.atlassian.com/adminjiracloud/working-with-workflows-776636540.html

To find out what workflow your JIRA project is configured for find a JIRA issue for the project
and click on the “View workflow” link on the issue status field. Note that different JIRA issue
types may have different workflows.

Understanding your JIRA workflow is essential for getting the best data out of your JIRA
system. For example, in our previous example we collected a work in progress KPI by
searching for JIRA issues that have the status “In Progress”. This status is a default one,
provided by the default workflow, however, many organisations operate much more
sophisticated JIRA workflows with potentially multiple “In Progress” states. For example the
following workflow defines potentially six states that could be considered as “In Progress”:

1. In Progress
2. Test
3. Ready For Development
4. Ready For QA
5. Ready For Staging
6. Ready for Production

Based on the above workflow we might rewrite our example work in progress JQL as:

{base_jql} AND status WAS IN ('In Progress','Test','Ready For Development','Ready For
QA','Ready For Staging','Ready For Production') ON '{DATE,yyyy-MM-dd}'

In the previous section we looked at simplifying complex JQL through the use of
ServiceClarity variables. The ability to define a custom variable for “In Progress” states not
only simplify the JQL it also enables reuse of the definition of what is in progress across
multiple KPIs.

Making use of our new active.states variable we can rewrite our final version of the JQL for a
work in progress KPI as:

{base_jql} AND status WAS IN ({active.states}) ON '{DATE,yyyy-MM-dd}'

Checking what data you have
Beyond the essential JIRA KPIs, work in progress, work outstanding (backlog), etc, what
KPIs can be derived from your JIRA data depends on how your JIRA is configured and how
you make use of JIRA workflows and fields. For example, do you size your work with
estimates? Do you have a “reopened” state in your workflow? Are JIRA issues moved
promptly between states in your workflow?

However, there are some basic checks that can be performed to ensure that you get the
best out of the data that you have.

Completed work
Work that has been completed, regardless of which custom workflow is used, should move
to its final state with an assigned “resolution”. When an issue in JIRA is assigned a
resolution certain internal JIRA processes are triggered. For tracking JIRA KPIs in
ServiceClarity the most important of these triggered processes is the automatic setting of a
resolution date. Although not essential certain KPIs are best expressed in terms of this
resolution date.

It is possible to check if your JIRA issues are being completed with a resolution by running
the following JQL in the JIRA Issue Search:

resolutiondate is EMPTY AND statusCategory = Done

The above query should not return any results. If results are returned then check that the
“resolution” field is not hidden, which is a common cause of missing resolution dates.

Detailed timings
ServiceClarity is capable of tracking many different time related JIRA KPIs, including but not
limited to: the total time that work takes, the average time that it is waiting, the average time
to respond, etc. Most of these time based KPIs rely on detailed internal JIRA records that
are not normally available in the JIRA application itself. These detailed timings are collected
by one of the default Atlassian add-ons: JIRA Charting plugin. This add-ons is available and
enabled by default on all JIRA Cloud accounts. On standalone JIRA Server installations it is
available but can sometimes be disabled.

If you are interested in tracking cycle-times, mean time to respond, mean time to
resolve, average lead times, etc then it is worth checking that your JIRA system has the
JIRA Charting plugin enabled. If you have administrative privileges the easiest way to
confirm that you can get timing data from your JIRA is from within the JIRA application.
Access the JIRA Administration menu and navigate to the “Issues” settings and then
from there go the the “Custom fields” settings. If the JIRA Charting plugin is enabled there
will be two custom fields:

How to connect ServiceClarity to JIRA
To collect data from your JIRA system ServiceClarity needs to be configured with connection
details. You will need the following JIRA details:

1. JIRA username
2. JIRA password
3. JIRA URL - e.g. https://example.atlassian.net

Although ServiceClarity can connect with your JIRA system using any user credentials you
provide we strongly recommend that you create a specific user account for ServiceClarity.
This enables you to control the JIRA projects and data that can be accessed by
ServiceClarity from within JIRA - for example a JIRA user for ServiceClarity does not need
write access nor does it need access to projects that will not be tracked from ServiceClarity.

The JIRA URL that you will need is the public address of your JIRA system. To determine
this login into JIRA and copy the the start of the address up to and including the .net or .com,
etc. In the above example this would be: https://serviceclarity.atlassian.net

From the ServiceClarity application you can create as many connections to your JIRA
system as you need. As you build your library of JIRA KPIs you may find that grouping
similar sets of JIRA data into separate JIRA connections is a useful way to manage data for
specific projects or types of issues, etc. In the screenshot below you can see multiple JIRA
connections within ServiceClarity that separate out the data for different projects:

To create a new connection to JIRA in SerivceClarity navigate to the connections page and
select the “New” button at the top right hand side of your screen. The new connections

dialogue that pops-up offers a number of different connection types including one for JIRA &
JIRA ServiceDesk.

Once you have selected JIRA & JIRA ServiceDesk from the available list you may also
choose to base this new connection on an existing template, which will include a number of
JIRA data collectors templates and associated KPIs. For example, if you have already
created a JIRA connection you can at this point choose to copy it as a template for your new
connection.

Your newly created connection will need to be configured with your JIRA details - click on
the “Edit” link on the JIRA Connection Details section of the connection page.

If you have opted to create a new JIRA connection from an existing template your new
connection will have a set of pre-provisioned configuration options and metrics.

The example JIRA connection configuration shown here includes 3 JIRA data collectors for
active users, closed issues and in progress issues. All of these have been inherited from
an existing connection. There are also 4 configured ServiceClarity variables - described in a
previous section on ServiceClarity JQL variables. At this point it is worth reviewing these
variables as they may need updated to reflect the purpose of this JIRA connection, perhaps
a change of project or issue type in the base_jql variable or perhaps this connection does
not include “Waiting for customer” as one of the active.states. It is also worth reviewing the
inherited JIRA data collectors (metrics) to make sure that they do not need refined.

ServiceClarity JIRA data collectors
There are a range of specialised ServiceClarity data collectors available of JIRA and JIRA
ServiceDesk - data collectors are also known as “metrics” because they are low level metrics

extracted from JIRA. When adding a new data collector to a JIRA connection you can select
a standard “Issue Counter” or a JIRA ServiceDesk specific SLA collector or one of our cycle
time collectors, to name a few. Each of these different collector types will make use of JIRAs
JQL to narrow the focus of the collection, as described in previous sections. Some of these
collectors require additional configuration; the Custom Field collector for example must be
configured with the name of the custom field to collect as well as an aggregation function to
apply - SUM , AVG , MAX , etc.

JIRA Issue Counter

Options:

● jql - a ServiceClarity JQL filter to find the JIRA issues of interest

Returns:

● The number of JIRA issues returned by the JQL query

The JIRA Issue Counter is the default ServiceClarity data collector for JIRA. It is the
cornerstone of many essential JIRA KPIs, work in progress, backlog, burndown, %
issues rejected, etc.

To configure a JIRA Issue Counter you need to specify the JQL that finds the JIRA issues
(or bugs, tasks, etc) that are to be counted. No additional configuration is required, although
it is recommend that you consider defining a list of JIRA issue fields a breakdown for the
returned data. For example, a backlog collection of outstanding work might be broken down

by issue type or issue priority or by and custom field configured for your JIRA system. The
JIRA Issue Counter can also be used to track quality KPIs such as the number of active
issues without estimates, which depending on your process could represent unplanned
work.

Elapsed SLA Time (Service Desk)

Options:

● jql - a ServiceClarity JQL filter to find the JIRA issues of interest
● sla - the name of the JIRA ServiceDesk SLA

Returns:

● The average elapsed SLA time in seconds of JIRA ServiceDesk issues returned by
the JQL query

The Elapsed SLA Time collector is specific to JIRA ServiceDesk and requires that your JIRA
Cloud account or JIRA Server instance is configured with at least one SLA. This collector will
calculate the average elapsed SLA time of all JIRA issues returned from the JQL query. This
could be used to calculate the average time of issues that have been resolved, to give an
average response time KPI or an average resolution time KPI.

To configure an Elapsed SLA Time collector you need to specify the JQL and the name of
the SLA, for example an average resolution time collector could be configured as:

Remaining SLA Time (Service Desk)

Options:

● jql - a ServiceClarity JQL filter to find the JIRA issues of interest
● sla - the name of the JIRA ServiceDesk SLA

Returns:

● The average remaining SLA time in seconds of JIRA ServiceDesk issues returned by
the JQL query

The Remaining SLA Time collector is specific to JIRA ServiceDesk and requires that your
JIRA Cloud account or JIRA Server instance is configured with at least one SLA. This
collector will calculate the average SLA time remaining of all JIRA issues returned from the
JQL query. With the right JQL this could be used to track an SLA risk factor or SLA margin
KPI.

To configure a Remaining SLA Time collector you need to specify the JQL and the name of
the SLA.

% SLA Overrun (Service Desk)

Options:

● jql - a ServiceClarity JQL filter to find the JIRA issues of interest
● sla - the name of the JIRA ServiceDesk SLA

Returns:

● The % SLA overrun of JIRA ServiceDesk issues returned by the JQL query

The % SLA Overrun collector is specific to JIRA ServiceDesk and requires that your JIRA
Cloud account or JIRA Server instance is configured with at least one SLA. This collector will
calculate the % of overrun on SLAs that have been breached, depending on the JIRA
issues returned from the JQL query. With the right JQL this could be used to monitor a
quality/performance KPI.

To configure a % SLA Overrun collector you need to specify the JQL and the name of the
SLA.

% SLA Remaining (Service Desk)

Options:

● jql - a ServiceClarity JQL filter to find the JIRA issues of interest
● sla - the name of the JIRA ServiceDesk SLA

Returns:

● The % SLA remaining of JIRA ServiceDesk issues returned by the JQL query

The % SLA Remaining collector is specific to JIRA ServiceDesk and requires that your JIRA
Cloud account or JIRA Server instance is configured with at least one SLA. This collector will
calculate the % of remaining of all JIRA issues returned from the JQL query. With the right
JQL this could be used to monitor a quality/performance KPI.

To configure a % SLA Remaining collector you need to specify the JQL and the name of the
SLA.

Count In State(s) (CHARTS)

Options:

● jql - a ServiceClarity JQL filter to find the JIRA issues of interest
● aggregate - the aggregate function to apply, e.g. COUNT(‘Open’)
● threshold - the number of times in a state before an issue is counted

Returns:

● The count JIRA issues returned by the JQL query that have been in the specified
aggregate state for the number of times specified as a threshold

The Count In State collector requires that your JIRA cloud account or JIRA Service
installation has the JIRA Charts plugin enabled (see the section on Checking what data you
have). This collector can count the number of JIRA issues that have been in a stage of the
JIRA workflow more than once. Depending on your workflow, and with the right JQL, it can
be used to track workflow KPIs such as: blocked tasks or reopened issues.

To configure a Count In State collector you need to specify the JQL, the name of the
workflow status and a threshold value for inclusion in the count. For example, you could
track work that has been in the “Open” state more than once to create a churn KPI.

Time Spent In State(s) (CHARTS)

Options:

● jql - a ServiceClarity JQL filter to find the JIRA issues of interest
● aggregate - the aggregate function to apply, e.g. AVG(‘In Progress’) or

SUM(‘In Progress’) or in multiple states AVG(‘Waiting on third
party’, ‘Waiting on customer’)

Returns:

● The aggregate SUM or AVG of the time spent, in minutes, in one or more workflow
states of JIRA issues returned by the JQL query

The Time Spent In State collector requires that your JIRA Cloud account or JIRA Service
installation has the JIRA Charts plugin enabled (see the section on Checking what data you
have). This collector can count the average or total time that JIRA issues spend in one or
more stages of the JIRA workflow. For example, with this collector it is possible to track KPIs
such as total time in progress, mean time in QA and total time waiting for release.

To configure a Time Spent In State collector you need to specify the JQL, the name of the
workflow status and an aggregation function to apply. For example, you could track the
average time spent waiting to create a waiting for release KPI.

Mean Time To Resolve (CHARTS)

Options:

● jql - a ServiceClarity JQL filter to find the JIRA issues of interest
● active.states - a list of JIRA workflow states that are considered to be active,

e.g. ‘In Progress,‘In QA’

Returns:

● The average of the time spent, in minutes, in one or more workflow states - defined
by the active.states option - of JIRA issues returned by the JQL query

Mean Time To Resolve collector requires that your JIRA Cloud account or JIRA Service
installation has the JIRA Charts plugin enabled (see the section on Checking what data you
have). This collector will count the average time that JIRA issues spend in one or more
designated “active” stages of the JIRA workflow. Simply define the list of workflow states that
indicate work is in progress and a JQL query that finds recently completed work to track a
mean time to resolve KPI.

To configure a Mean Time To Resolve collector you need to specify the JQL and the list of
workflow statuses that are considered to be “active”.

Total Time To Resolve (CHARTS)

Options:

● jql - a ServiceClarity JQL filter to find the JIRA issues of interest
● active.states - a list of JIRA workflow states that are considered to be active,

e.g. ‘In Progress,‘In QA’

Returns:

● The aggregate SUM of all time spent, in minutes, in one or more workflow states -
defined by the active.states option - of JIRA issues returned by the JQL query

Total Time To Resolve collector requires that your JIRA Cloud account or JIRA Service
installation has the JIRA Charts plugin enabled (see the section on Checking what data you
have). This collector will count the total time that all JIRA issues returned by the JQL query
spend in one or more designated “active” stages of the JIRA workflow. Simply define the list
of workflow states that indicate work is in progress and a JQL query that finds recently
completed work to track a time spent in progress KPI.

To configure a Total Time To Resolve collector you need to specify the JQL and the list of
workflow statuses that are considered to be “active”.

Mean Time On Hold (CHARTS)

Options:

● jql - a ServiceClarity JQL filter to find the JIRA issues of interest
● paused.states - a list of JIRA workflow states that are considered to be “on hold”,

e.g. ‘Waiting for customer’,‘In Review’

Returns:

● The average time spent, in minutes, in one or more workflow states - defined by the
paused.states option - of JIRA issues returned by the JQL query

Mean Time On Hold collector requires that your JIRA Cloud account or JIRA Service
installation has the JIRA Charts plugin enabled (see the section on Checking what data you
have). This collector will count the average time that all JIRA issues returned by the JQL
query spend in one or more designated “paused” stages of the JIRA workflow. Simply define
the list of workflow states that indicate work has paused and a JQL query that finds recently
completed work to track a mean time spent blocked KPI.

To configure a Mean Time On Hold collector you need to specify the JQL and the list of
workflow statuses that are considered to be “paused”.

Total Time On Hold (CHARTS)

Options:

● jql - a ServiceClarity JQL filter to find the JIRA issues of interest
● paused.states - a list of JIRA workflow states that are considered to be “on hold”,

e.g. ‘Waiting for customer’,‘In Review’

Returns:

● The aggregate SUM of all time spent, in minutes, in one or more workflow states -
defined by the paused.states option - of JIRA issues returned by the JQL query

Total Time On Hold collector requires that your JIRA Cloud account or JIRA Service
installation has the JIRA Charts plugin enabled (see the section on Checking what data you
have). This collector will count the total time that all JIRA issues returned by the JQL query
spend in one or more designated “paused” stages of the JIRA workflow. Simply define the
list of workflow states that indicate work has paused and a JQL query that finds recently
completed work to track a time spent blocked KPI.

To configure a Total Time On Hold collector you need to specify the JQL and the list of
workflow statuses that are considered to be “paused”.

Time To Respond (CHARTS)

Options:

● jql - a ServiceClarity JQL filter to find the JIRA issues of interest

Returns:

● The average time spent, in minutes, to respond to newly created issues calculated
from the JIRA issues returned by the JQL query

Time To Respond collector requires that your JIRA Cloud account or JIRA Service
installation has the JIRA Charts plugin enabled (see the section on Checking what data you
have). This collector will calculate the average time that it took for an assignee to respond to
issues returned by the JQL query creating a mean time to response KPI.

To configure a Time To Respond collector you need to specify the JQL that finds the target
JIRA issues, for example tracking the response time of issues newly created on any given
date would enable you to aggregate daily values to weekly and monthly trends in response
time.

Recorded Time Spent

Options:

● jql - a ServiceClarity JQL filter to find the JIRA issues of interest

Returns:

● The aggregate SUM of all time spent, in seconds, recorded by assignees against the
JIRA issues returned by the JQL query

The Recorded Time Spent collector requires that the assignee of a JIRA issue records their
time using the standard JIRA field: Time spent. This collector will calculate the total time (in
seconds) recorded by the assignee against all the JIRA issues returned by the JQL query.
The recorded time spent can be used directly as an effort or billable hours KPI or
combined with other data to calculate an actual vs estimates KPI.

To configure a Recorded Time Spent collector you need to specify the JQL that finds the
target JIRA issues, in general the total time spent is best calculated after JIRA issues have
been resolved - when all work is completed. Tracking the time spent of resolved issues on
any given date would enable you to aggregate daily values to weekly and monthly trends.

Estimated Time

Options:

● jql - a ServiceClarity JQL filter to find the JIRA issues of interest

Returns:

● The aggregate SUM of all estimated time, in seconds, recorded by assignees against
the JIRA issues returned by the JQL query

The Estimated Time collector requires that the standard JIRA field: Estimate is completed on
all issues of interest. This collector will calculate the total time (in seconds) recorded as an
estimate against all the JIRA issues returned by the JQL query. The estimated time can be
used directly as a measure of work in progress KPI or combined with other data to
calculate an actual vs estimates KPI.

To configure a Estimated Time collector you need to specify the JQL that finds the target
JIRA issues, in general the estimated is best calculated after JIRA issues have been
resolved - when all work is completed. Tracking the time spent of resolved issues on any
given date would enable you to aggregate daily values to weekly and monthly trends.

Custom Field Value

Options:

● jql - a ServiceClarity JQL filter to find the JIRA issues of interest
● aggregate - the aggregate function to apply, e.g. AVG(‘T-Shirt Size’) or

SUM(‘Story Points’)

Returns:

● The aggregate SUM or AVG of any numeric JIRA field calculated across all JIRA
issues returned by the JQL query

The Custom Field collector will calculate the aggregate value of any numeric field including
fields added by JIRA plugins such as JIRA Agile and custom fields unique to your JIRA
instance or JIRA Cloud account. This collector can count , sum and average the value of
custom fields for all JIRA issues returned by the JQL query. It can also find the max and min
values. For example with this collector it is possible to track a work in progress KPI from
JIRA Agile Story Points.

To configure a Custom Field collector you need to specify a suitable JQL query to find JIRA
issues of interest and an aggregate function to apply to your custom field.

Active JIRA Users Counter

Options:

● jql - a ServiceClarity JQL filter to find the JIRA issues of interest

Returns:

● The total number of unique assignees calculated across all JIRA issues returned by
the JQL query

The Active JIRA Users collector will calculate the total number of unique JIRA assignees of
all issues returned by the JQL query. With an appropriate JQL query it can be used to track
an active users KPI day by day, aggregating activity over weeks and months are required. It
can also be used in combination with other KPIs such as work in progress and estimates to
project delivery dates and plan release dates.

Active Projects Counter

Options:

● jql - a ServiceClarity JQL filter to find the JIRA issues of interest

Returns:

● The total number of unique projects calculated across all JIRA issues returned by the
JQL query

The Active Projects Counter will calculate the total number of unique JIRA projects across
the issues returned by the JQL query. With an appropriate JQL query it can be used to track
an active projects KPI day by day, aggregating activity over weeks and months are
required.

